Generalization and Expressivity for Deep Nets

نویسنده

  • Shao-Bo Lin
چکیده

Along with the rapid development of deep learning in practice, theoretical explanations for its success become urgent. Generalization and expressivity are two widely used measurements to quantify theoretical behaviors of deep learning. The expressivity focuses on finding functions expressible by deep nets but cannot be approximated by shallow nets with the similar number of neurons. It usually implies the large capacity. The generalization aims at deriving fast learning rate for deep nets. It usually requires small capacity to reduce the variance. Different from previous studies on deep learning, pursuing either expressivity or generalization, we take both factors into account to explore theoretical advantages of deep nets. For this purpose, we construct a deep net with two hidden layers possessing excellent expressivity in terms of localized and sparse approximation. Then, utilizing the well known covering number to measure the capacity, we find that deep nets possess excellent expressive power (measured by localized and sparse approximation) without essentially enlarging the capacity of shallow nets. As a consequence, we derive near optimal learning rates for implementing empirical risk minimization (ERM) on the constructed deep nets. These results theoretically exhibit the advantage of deep nets from learning theory viewpoints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stronger generalization bounds for deep nets via a compression approach

Deep nets generalize well despite having more parameters than the number of training samples. Recent works try to give an explanation using PAC-Bayes and Margin-based analyses, but do not as yet result in sample complexity bounds better than naive parameter counting. The current paper shows generalization bounds that’re orders of magnitude better in practice. These rely upon new succinct repara...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

On the Ability of Neural Nets to Express Distributions

Deep neural nets have caused a revolution in many classification tasks. A related ongoing revolution—also theoretically not understood—concerns their ability to serve as generative models for complicated types of data such as images and texts. These models are trained using ideas like variational autoencoders and Generative Adversarial Networks. We take a first cut at explaining the expressivit...

متن کامل

Deep Semi-Random Features for Nonlinear Function Approximation

We propose semi-random features for nonlinear function approximation. The flexibility of semirandom feature lies between the fully adjustable units in deep learning and the random features used in kernel methods. For one hidden layer models with semi-random features, we prove with no unrealistic assumptions that the model classes contain an arbitrarily good function as the width increases (univ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018